16,507 research outputs found

    Dark Radiation Emerging After Big Bang Nucleosynthesis?

    Full text link
    We show how recent data from observations of the cosmic microwave background may suggest the presence of additional radiation density which appeared after big bang nucleosynthesis. We propose a general scheme by which this radiation could be produced from the decay of non-relativistic matter, we place constraints on the properties of such matter, and we give specific examples of scenarios in which this general scheme may be realized.Comment: v3: 5 pages, 1 figure. References added, typos corrected, notation changed throughout. v2: 5 pages, 1 figure. Reformatted, references added, acknowledgments updated, effect of radiation on CMB clarified. v1: 11 pages, 1 figur

    The Cardy-Verlinde equation in a spherical symmetric gravitational collapse

    Full text link
    The Cardy-Verlinde formula is analyzed in the contest of the gravitational collapse. Starting from the holographic principle, we show how the equations for a homogeneous and isotropic gravitational collapse describe the formation of the black hole entropy. Some comments on the role of the entangled entropy and the connection with the c-theorem are made

    Cosmological Density Perturbations with a Scale-Dependent Newton's G

    Full text link
    We explore possible cosmological consequences of a running Newton's constant G(â–ˇ) G ( \Box ) , as suggested by the non-trivial ultraviolet fixed point scenario in the quantum field-theoretic treatment of Einstein gravity with a cosmological constant term. In particular we focus here on what possible effects the scale-dependent coupling might have on large scale cosmological density perturbations. Starting from a set of manifestly covariant effective field equations derived earlier, we systematically develop the linear theory of density perturbations for a non-relativistic, pressure-less fluid. The result is a modified equation for the matter density contrast, which can be solved and thus provides an estimate for the growth index parameter Îł\gamma in the presence of a running GG. We complete our analysis by comparing the fully relativistic treatment with the corresponding results for the non-relativistic (Newtonian) case, the latter also with a weakly scale dependent GG.Comment: 54 pages, 4 figure

    Improved Action Functionals in Non-Perturbative Quantum Gravity

    Full text link
    Models of gravity with variable G and Lambda have acquired greater relevance after the recent evidence in favour of the Einstein theory being non-perturbatively renormalizable in the Weinberg sense. The present paper builds a modified Arnowitt-Deser-Misner (ADM) action functional for such models which leads to a power-law growth of the scale factor for pure gravity and for a massless phi**4 theory in a Universe with Robertson-Walker symmetry, in agreement with the recently developed fixed-point cosmology. Interestingly, the renormalization-group flow at the fixed point is found to be compatible with a Lagrangian description of the running quantities G and Lambda.Comment: Latex file. Record without file already exists on SLAC-SPIRES, and hence that record and the one for the present arxiv submission should become one record onl

    Vacuum energy and Universe in special relativity

    Full text link
    The problem of cosmological constant and vacuum energy is usually thought of as the subject of general relativity. However, the vacuum energy is important for the Universe even in the absence of gravity, i.e. in the case when the Newton constant G is exactly zero, G=0. We discuss the response of the vacuum energy to the perturbations of the quantum vacuum in special relativity, and find that as in general relativity the vacuum energy density is on the order of the energy density of matter. In general relativity, the dependence of the vacuum energy on the equation of state of matter does not contain G, and thus is valid in the limit when G tends to zero. However, the result obtained for the vacuum energy in the world without gravity, i.e. when G=0 exactly, is different.Comment: LaTeX file, 7 pages, no figures, to appear in JETP Letters, reference is adde

    Aspects of Nucleon Chiral Perturbation Theory

    Get PDF
    I review recent progress made in the calculation of nucleon properties in the framework of heavy baryon CHPT. Topics include: Compton scattering, πN\pi N scattering, the anatomy of a low-energy constant and the induced pseudoscalar form factor.Comment: plain TeX (macro included), 12pp, lecture delivered at the workshop on "Chiral Dynamics: Theory and Experiments", MIT, July 25-29, 199

    The spin-statistics connection in classical field theory

    Full text link
    The spin-statistics connection is obtained for a simple formulation of a classical field theory containing even and odd Grassmann variables. To that end, the construction of irreducible canonical realizations of the rotation group corresponding to general causal fields is reviewed. The connection is obtained by imposing local commutativity on the fields and exploiting the parity operation to exchange spatial coordinates in the scalar product of classical field evaluated at one spatial location with the same field evaluated at a distinct location. The spin-statistics connection for irreducible canonical realizations of the Poincar\'{e} group of spin jj is obtained in the form: Classical fields and their conjugate momenta satisfy fundamental field-theoretic Poisson bracket relations for 2jj even, and fundamental Poisson antibracket relations for 2jj oddComment: 27 pages. Typos and sign error corrected; minor revisions to tex

    On the Gauged Non-compact Spin System

    Get PDF
    We examine classical and quantum aspects of the planar non-compact spin system coupled with Chern-Simons gauge field in the presence of background charge. We first define our classical spin system as non- relativistic non-linear sigma model in which the order parameter spin takes value in the non-compact manifold M=SU(1,1)/U(1){\cal M}=SU(1,1)/U(1). Although the naive model does not allow any finite energy self dual solitons, it is shown that the gauged system admits static Bogomol'nyi solitons with finite energy whose rotationally symmetric soliton solutions are analyzed in detail. We also discuss the large spin limit in which the self-dual equation reduces to the well-known gauged non- linear Schr\"odinger model or Abelian Higgs model, depending on the choice of the background charge term. Then, we perform quantization of the model. We find that the spin algebra satisfies anomalous commutation relations, and the system is a field theoretic realization of the anyons.Comment: 21 pages, Latex, 3 figures include

    Vapor Deposited Tungsten for Application as a Thermionic Emitter Material

    Get PDF
    Purity and resistance to grain growth of vapor deposited tungsten tubing for use as thermionic emitte
    • …
    corecore